Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design.

نویسندگان

  • Brian G Pierce
  • Zhen-Yong Keck
  • Patrick Lau
  • Catherine Fauvelle
  • Ragul Gowthaman
  • Thomas F Baumert
  • Thomas R Fuerst
  • Roy A Mariuzza
  • Steven K H Foung
چکیده

The E2 envelope glycoprotein is the primary target of human neutralizing antibody response against hepatitis C virus (HCV), and is thus a major focus of vaccine and immunotherapeutics efforts. There is emerging evidence that E2 is a highly complex, dynamic protein with residues across the protein that are modulating antibody recognition, local and global E2 stability, and viral escape. To comprehensively map these determinants, we performed global E2 alanine scanning with a panel of 16 human monoclonal antibodies (hmAbs), resulting in an unprecedented dataset of the effects of individual alanine substitutions across the E2 protein (355 positions) on antibody recognition. Analysis of shared energetic effects across the antibody panel identified networks of E2 residues involved in antibody recognition and local and global E2 stability, as well as predicted contacts between residues across the entire E2 protein. Further analysis of antibody binding hotspot residues defined groups of residues essential for E2 conformation and recognition for all 14 conformationally dependent E2 antibodies and subsets thereof, as well as residues that enhance antibody recognition when mutated to alanine, providing a potential route to engineer E2 vaccine immunogens. By incorporating E2 sequence variability, we found a number of E2 polymorphic sites that are responsible for loss of neutralizing antibody binding. These data and analyses provide fundamental insights into antibody recognition of E2, highlighting the dynamic and complex nature of this viral envelope glycoprotein, and can serve as a reference for development and rational design of E2-targeting vaccines and immunotherapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Preventive Vaccines for Hepatitis C Virus E1/E2 Protein

Hepatitis C virus (HCV) is responsible for a vast majority of liver failure cases. HCV is a kind of blood disease appraised to chronically infect 3% of the worlds’ population causing significant morbidity and mortality. Therefore, a complete knowledge of humoral responses against HCV, resulting antibodies, and virus-receptor and virus-antibody interactions, are essential to design a vaccine. HC...

متن کامل

Identification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2

Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...

متن کامل

A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach

Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...

متن کامل

Conformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2

The hepatitis C virus (HCV) glycoprotein E2 is the major target of neutralizing antibodies and is therefore highly relevant for vaccine design. Its structure features a central immunoglobulin (Ig)-like β-sandwich that contributes to the binding site for the cellular receptor CD81. We show that a synthetic peptide corresponding to a β-strand of this Ig-like domain forms an α-helix in complex wit...

متن کامل

Interferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations

Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره   شماره 

صفحات  -

تاریخ انتشار 2016